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ABSTRACT 

In order to design an efficient market-reactive 
revenue management system for airlines, it is 
necessary to have at hand a representative 
probability distribution of demand by period, by 
fare class and by order of arrival. For this, a dual 
geometric programming problem can be 
formulated according to the principle of 
maximum entropy. Making use of the 
corresponding primal form of the geometric 
program, the large scale convex optimization 
problem is transformed into a non-constrained 
non-convex minimization problem. The solution 
strategy proposed consists of two main steps: 
first, solve the primal form of the geometric 
program and second, compute by geometric 
inversion the updated probability distributions. A 
numerical solution of the non-convex primal 
geometric program is obtained using an ad-hoc 
designed genetic algorithm. Its performances had 
been evaluated under different simulation 
scenarios involving various fare classes, several 
forecasting periods and different demand profiles, 
showing satisfactory results. 
 
INTRODUCTION 

The aim of airline revenue management 
systems is to maximize the revenues of airlines 
obtained from selling the available seats on their 
scheduled flights. Advanced revenue management 
systems present four main components: 
forecasting, overbooking, seat inventory control 
and pricing. A revenue management system 
works on-line, gathering the most recent updates 

provided by the demand forecasting functions and 
the current state of reservations, to proceed with 
the treatment of new requests. In order to take 
into account the highly stochastic nature of 
booking requests, forecasts should be updated 
with the latest information available. When a 
feedback control loop can be established between 
an inventory control module and a demand 
forecasting updating process, this can lead to an 
efficient market-reactive revenue management 
system, as reprepresented in the figure:    
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Figure 1. Structure for a market-reactive airline 
RM systems. 
 
THE DEMAND PROBABILITY 
DISTRIBUTION UPDATING PROBLEM 

Classical probabilistic distributions, such as 
Poisson distribution, binomial distribution or 
gamma distribution and variations or 
combinations of them have been proposed to 
model the dynamic process of booking, including 
cancellations, no-shows and go-shows. Empirical 
studies showed that the normal distribution 
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provides an acceptable continuous approximation 
for the distribution of the total demand for a 
flight, but researchers argue that this distribution 
becomes inappropriate when temporal 
distributions of demand are needed [1]. 

Several stochastic models of booking requests 
have been proposed in the literature: homogenous 
and non-homogenous Poisson processes, leading 
to the cumulative Poisson process and the 
censored Poisson process [2]. Data available in 
the records of past reservations which are used to 
provide demand forecasts are usually biased by 
the existence of booking limits for each fare class: 
in general booking requests exceeding the limits 
of these fare classes, are not recorded.  

Once a prior probabilistic distribution of 
demand along the whole booking horizon is 
turned available, an on line adaptation process 
devoted to the updating, according to current data, 
of the temporal probability distributions of 
demand, should be started [3]. This need leads to 
the formulation of a new optimization problem, 
which must be solved at each time step of the 
booking process. 

To state the corresponding optimization 
problem at time step n, the notations presented in 
the Nomenclature are adopted. In the simple case 
where demand suffers only temporal shifts, δn is 
given by:  

 
 nn dD −=δ    (1) 

 
Otherwise, complex estimation techniques, 

including qualitative reasoning to take advantage 
of expert knowledge, must be used to get an 
updated mean value of the remaining demand δn. 
Consistency implies that the following relation 
holds: 
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In the proposed approach, the a priori 

distribution probabilities have to be corrected at 
the beginning of each decision period n, over the 
remaining decision periods k = n to N, taking into 
account the most recent available information (the 
expressed demand as well as other newly foreseen 
effects) obtained during the last decision period. 
To update the demand probability distribution, its 
potential changes (between the predicted and the 
real recorded demand) have to be spread over the 
remaining decision periods to meet the new 

consistency condition (2). This leads to the 
minimization of the information gain criterion 
given in the following expression:  
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which corresponds also to the maximization of a 
relative entropy between a measure of the 
distance between the (n-1)th and the nth demand 
probability distributions estimations. 

 
Here, 1−n

jkp  denotes the previous probabilities 
computed at the beginning of the (n-1)th decision 
period, hence available for the nth decision period 
and the n

jkp  are the new probabilities to be 
obtained from the solution of the optimization 
problem whose set of constraints (2) is completed 
by :   

 

∑
=

=
J

j

n
jkp

0
1   (4) 

for all k=n to N, and  
 

  0≥n
jkp    (5) 

 
for   j = 1 to J and k=n to N.   
 

The updating process of the pn
jk probabilities 

of upcoming demand makes use of a dual 
geometric programming formulation [4] for an 
optimization criterion of the information gain type 
(3), under positivity (6), normality (7) and 
orthogonality (8, 9)  constraints:  
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where k∈{n+2, n+3, … , N}, n is the decision 
period, j is the number of demands and pn-1

jk are 
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the initial probability distributions, before 
updating. 

The problem is transformed into a non-
constrained non-convex minimization problem, 
making use of the corresponding primal form of 
the geometric program, relation (10), for which 
genetic algorithms are used to get a numerical 
solution.  
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with tk > 0, for k ∈{n+1, n+2, …, N}. 

Then, using inverse geometric duality 
relations, the updated probability distributions are 
computed and made available for further use, 
according with relations (11) and (12): 

 
for k=n+1 : 
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for k=n+2 to N : 
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RESOLUTION OF THE PRIMAL 
GEOMETRIC PROBLEM 

In order to solve the Primal Geometric 
Problem, which consists of the minimization of 
the following non-convex problem, under the 
positivity constraints, tk>0: 
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where the tk , k = n+1 to N, are the variables, 
strictly positive and where {δn} and {xjk

n-1} are 
positive constants, an optimization method based 
on Geometric Algorithms is developed and 
applied for obtaining the numerical solution.  

The choice of this alternative for solving the 
Primal Geometric Problem is based on the 
complexity of the minimization problem, for 
which the Genetic Algorithms offer the advantage 

of a parallel exploration of the search space. The 
Genetic Algorithm offers a simple way of 
solution encoding, a fast way of finding good 
solutions and the capacity to escape from local 
minima (contrarily to the application of 
mathematical programming techniques for which 
the efforts of elaboration of analytic expressions 
of gradients etc. and for which the corresponding 
computing time may be prohibitive. 

Figure 2 gives an example of a graphical 
representation of the objective function (13) in the 
case of two variables. 
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Figure 2. Three-dimensional representation of the 
objective function for the Primal Geometric 
Problem. 

 
In order to solve this optimization problem 

applying a Genetic Algorithm, the following 
characteristics for its implementation have been 
chosen: 

The fitness function consists of the 
minimization criterion itself (13) within the 
search space given by {tk∈ℜ+*, k =1 to N-n}. 

The encoding retained consists of allocating to 
each variable tk of the solution an equal number of 
binary genes (of value 0 or 1) such that each 
decimal value has a corresponding binary 
number. Then, the original value is obtained 
from: 
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where tk,max is the superior limit adopted for the 
variable tk. This encoding allows, with a sufficient 
number of genes for the representation of each 
variable (i.e. 16, 32), to choose the precision level 
within the search space. For example, a vector t, 
formed by four components (t1, t2, t3, t4), with 



Inverse Problems, Design and Optimization Symposium 
Rio de Janeiro, Brazil, 2004 

eight genes for the representation of each of them, 
is such that: 

1 0 0 1 1 1 0 1  0 1 1 1 0 1 0 0  1 0 0 0 1 1 1 0  1 0 1 1 0 0 0 1

t1 t2 t3 t4

 
 
Figure 3. Binary representation of a solution 
vector. 
 

The selection method chosen here for the 
genetic algorithm is of  the following type: each 
individual xi of the population within which the 
selection is performed will be assigned a 
probability pi of being chosen, in accordance with 
its corresponding value computed by applying the 
fitness function. A random number r is generated 
uniformly between 0 and 1. Then, the kst 
individual is selected if:  
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Thus, the probability that xk is selected is 

given by pk. In the literature, this classical 
procedure is known as the roulette wheel 
selection method [5]. 

The cross-over operator retained here is the 
same as the one proposed by Osyczka [6]. It 
consists of a cross-over performed on a single 
variable tk of the solution in order to maintain the 
consistence of the structure of the solution vector. 
To implement this operator, the binary string 
composing the chromosome is divided into (N-n) 
parts, each of them representing one component 
of the solution vector t. In the following figure 
(Figure 4), the result obtained by applying the 
cross-over operator on the third variable (t3) of the 
initial solutions (X et Y) is represented:  

 

1 0 0 1 1 1 0 1  0 1 1 1 0 1 0 0  1 0 0 0 1 1 1 0  1 0 1 1 0 0 0 1

t1 t2 t3 t4

X = 

1 1 0 0 1 0 1 1  0 0 0 1 1 1 1 0  1 1 0 1 0 1 0 0  1 0 0 0 0 0 1 0

t1 t2 t3 t4

Y = 

1 0 0 1 1 1 0 1  0 1 1 1 0 1 0 0  1 0 00  11  00  11  00  00  1 0 1 1 0 0 0 1

t1 t2 t3 t4

X’ = 

1 1 0 0 1 0 1 1  0 0 0 1 1 1 1 0  1 1 00  00  11  11  11  00  1 0 0 0 0 0 1 0

t1 t2 t3 t4

Y’ =  
 

Figure 4.  Crossover operator example 

An example of the evolution of the objective 
function obtained by applying the genetic 
algorithm, with the following parameters, is given 
in Figure 5: 

 
Population size = 50; 
Mutation Probability = 0.1; 
Cross-over probability = 0.6; 
Number of generations = 500. 
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Figure 5. Evolution of the fitness function value 

 
 

SIMULATION SCENARIOS FOR THE 
DAILY DEMAND FORECASTS UPDATING 
APPROACH 

 
Several numerical results obtained by 

applying the dynamic demand forecasts updating 
approach are presented here. Two qualitative 
evaluation indicators are proposed, in order to 
characterize the  degree of accuracy of the a priori 
information about the demand. 

A proposed first indicator (In) is given by: 
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2,...,1.-N1,-Nnfor =∀  

where : 
- n is the number of decision periods on which 

the updating process is applied, using the new 
estimates δn (the current forecast for the global 
demand to come during the remaining booking 
horizon), 

- pjk
n+1 are the probabilities to have j booking 

requests for the considered fare class during the 
kst period, updated for the n remaining periods, 
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- pjk
N+1 are the initial probabilities, 

computed at the beginning of the time 
horizon (for the N-1 remaining periods) 
as shown in Figure 6. 

A second indicator is proposed (R), giving a 
global information on the accuracy of the degree 
of a priori knowledge characterizing the forecasts 
for the remaining booking horizon (N-1 periods).  
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Here, {pjn

n+1} represents the probability 
distribution updated at each remaining period 
n+1, n= N-1, …, 1.  
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Figure 6. The time dimension of the updating 
process. 

 
Several simulation scenarios have been 

considered in order to display the effectiveness of 
the proposed approach. 

In the first scenario, the initial and updated 
forecasts are considered to be close to each other. 

In the following three scenarios, significant 
differences have been considered. In the second 
scenario, the updated forecasts characterize a 
demand lower than the initially estimated one. In 
the third and fourth scenarios, an over-estimation 
and, respectively, an under-estimation of the 
initial forecasts are considered. 

The values of the proposed indicators, In and 
rn (relations 16 and 17), are showing good 
correlation with the accuracy of the a priori 
degree of knowledge characterizing the forecasts 
for the remaining booking horizon (10 days). 

In the first scenario (figure 7) the value of 
both indicators is very low (close to zero), 

reflecting a very high degree of a priori 
knowledge characterizing the forecasts. 

In the second scenario (figure 8) the degree of 
a priori knowledge characterizing the forecasts is 
quite low, which implies high values for rn and 
especially for the indicator In. 

In scenarios 3 and 4 (figures 9 and 10) the 
values of the two indicators rn and In show good 
correlation with the different degrees of a priori 
knowledge characterizing the forecasts: the values 
of the indicators are high when there is poor a 
priori knowledge about the forecasts and vice-
versa. 

Numerical results are shown in the following 
four figures, where the different curves of the 
level of forecasted cumulated demand versus the 
remaining days before departure, as well as the 
corresponding curves with the computed values of 
the two indicators In and rn are presented. 
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Figure 7. Scenario 1. 
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Figure 8. Scenario 2. 
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Figure 9. Scenario 3. 
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Figure 10. Scenario 4. 
 
CONCLUSIONS 

The present communication brings three main 
contributions. First, an on-line probability 
distribution updating process is proposed so that 
dynamic approaches for Revenue Management 
Decision Making can be turned market-reactive. 
This approach can be also applied to other fields 
related with perishable asset Revenue 
Management. 

Second, the proposed solution approach mixes 
for the first time an advanced mathematical 
programming technique, geometric programming, 
and a stochastic numerical solution technique, 
genetic algorithms, to solve by geometric duality 
inversion a highly constrained non linear 
optimization problem. 

Third, for each realization of the forecasts 
updating process, the a priori knowledge about 
the demand for a given fare class on a given 
flight, can be evaluated through proposed 
qualitative indicators. Then, these indicators can 

play an important tactical part with respect to the 
commercial policy of an airline. 
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